Topology Optimization Method for Dynamic Fatigue Constraints Problem

نویسندگان

  • Seung Hyun Jeong
  • Dong-Hoon Choi
  • Gil Ho Yoon
چکیده

1. Abstract In this research, a new topology optimization (TO) method was proposed to consider dynamic failure criteria (fatigue) under constant and proportional loading. Despite the great development of the topology optimization, the TO method considering the static or dynamic failure constraints has been regarded as one of the difficult problems. Although the TO method for the static failure has been studied extensively nowadays, the TO method considering the dynamic fatigue constraints is remained as an unexplored field. In order to address the dynamic failure in TO, this research develops a new fatigue-constrained topology optimization procedure. Because the dynamic responses as well as the static responses should be considered, it is more difficult than the stress-based topology optimization due to the non-differentiable fatigue criteria of the modified Goodman, the Soderberg and the Gerber theories. By addressing these issues numerically, this research can solve the topology optimization problem considering the fatigue constraint successfully. 2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOLVING MULTI CONSTRAINTS STRUCTURAL TOPOLOGY OPTIMIZATION PROBLEM WITH REFORMULATION OF LEVEL SET METHOD

Due to the favorable performance of structural topology optimization to create a proper understanding in the early stages of design, this issue is taken into consideration from the standpoint of research or industrial application in recent decades. Over the last three decades, several methods have been proposed for topology optimization. One of the methods that has been effectively used in stru...

متن کامل

Automotive Wheel Optimization to Enhance the Fatigue Life

Nowadays, lightweight automotive component design, regarding fuel consumption, environmental pollutants and manufacturing costs, is one of the main issues in the automotive societies. In addition, considering safety reasons, the durability of the automotive components, as one of the most important design requirements should be guaranteed. In this paper, a two-step optimization process including...

متن کامل

ISOGEOMETRIC TOPOLOGY OPTIMIZATION OF STRUCTURES CONSIDERING WEIGHT MINIMIZATION AND LOCAL STRESS CONSTRAINTS

The Isogeometric Analysis (IA) is utilized for structural topology optimization  considering minimization of weight and local stress constraints. For this purpose, material density of the structure  is  assumed  as  a  continuous  function  throughout  the  design  domain  and approximated using the Non-Uniform Rational B-Spline (NURBS) basis functions. Control points of the density surface are...

متن کامل

A NEW MEMETIC SWARM OPTIMIZATION FOR SPECTRAL LAYOUT DESIGN OF BRACED FRAMES

For most practical purposes, true topology optimization of a braced frame should be synchronized with its sizing. An integrated layout optimization is formulated here to simultaneously account for both member sizing and bracings’ topology in such a problem. Code-specific seismic design spectrum is applied to unify the earthquake excitation. The problem is solved for minimal structural weight un...

متن کامل

VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013